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Phase plane Sta¨ckel potential dynamics of the Manakov system
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A wide class of traveling-wave solutions of the Manakov system of coupled nonlinear Schro¨dinger equations
is found to possess a potential which leads to separability in the Sta¨ckel sense exhibiting two integrals of
motion, which facilitates a thorough investigation of this system by nonlinear dynamics phase plane methods.
On this basis, specific types of nonlinear waves are identified via a complete phase space trajectory investiga-
tion. The topological features of the phase space structure and the asymptotic behavior of the trajectory
families involved are studied. Time domain analytical solutions are provided involving hyperelliptic integrals
and their series expressions of the latter, in terms of the three elliptic integrals. Among the trajectory families,
solitary-type envelope solutions to the Manakov system are easily identified on the basis of a limited number
of parameters.@S1063-651X~98!07007-X#

PACS number~s!: 03.40.Kf, 46.90.1s, 42.81.Dp, 42.65.Tg
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I. INTRODUCTION

It is widely known that the system of two coupled no
linear Schro¨dinger ~NLS! equations, can be expressed in d
mensionless form as follows:

i
]u

]j
5

]2u

]2t
1u~ uuu21suvu2!, ~1a!

i
]v
]j

5
]2v
]2t

1v~ uvu21suuu2!. ~1b!

In Eqs.~1a! and~1b!, u(j,t) andv(j,t) are slowly varying
envelopes,j andt are normalized propagation distance a
local time, respectively, while the coupling coefficients is
the ratio between the cross- and self-phase modulation
tributions to the nonlinear effects. For 651, Eq. ~1! is the
so-called Manakov system.

This system can effectively describe the interaction of
envelopes of two carrier waves in dispersive media exhi
ing a cubic nonlinearity and, therefore, it is~to some extent!
universal from the point of view of its applications in phy
ics. For example, it may effectively describe interactio
among various wave modes in plasmas, ion-acoustic
Langmuir @1,2#, or Langmuir to electromagnetic modes@3#.

Especially, in the field of the nonlinear optics the follow
ing applications can be listed that are distinguished by
values of the coefficients: For s50, Eq. ~1! represents a
system of two uncoupled NLS equations, which govern
propagation of slowly varying electromagnetic waves in no
linear optical fibers in the anomalous dispersion regime@4#.
In this case,u ~or v! represent the complex-valued pulseli
envelope of the electric field distribution,j is the normalized
spatial variable along the propagation distance andt is the
normalized time in the reference frame moving with t
group velocity. Fors!1, Eq. ~1! governs the dynamics o
the interaction of two modes in nonlinear optical fibers@5#,
or in directional couplers with weak intermodal coupling
the high-intensity limit@6,7#. In this case,u andv represent
the complex valued envelopes of the two modes.

The system of Eqs.~1a! and ~1b! governs also the inter
action of two optical modes,u and v, through cross-phas
PRE 581063-651X/98/58~1!/1112~13!/$15.00
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modulation~CPM!, or the interaction of two different polar
izations,u and v, in single-mode birefringent optical fibe
@8–10# in the limit where wave mixing is neglected~e.g., in
the presence of rapid walkoff between the interact
modes!. In this case, the coupling coefficients depends on
the ellipticity of the fiber eigenmode, and in particular,s
52/3 for linearly polarized modes, and, in the general ca
2/3<s<2 for elliptical eigenmodes. The special value,s
51, corresponds to at least two possible cases, namely
case of a purely electrostrictive nonlinearity@11,12# or, in the
case of elliptical birefringence, when the angle between
major and the minor axes of the birefringence ellipse is
proximately 35°@7#. Notice that for this value,s51, Eqs.
~1a! and ~1b! represent the so-called Manakov system@13#,
which is an integrable version of the system of two coup
NLS ~CNLS! equations@14#. Actually, for s50 ~uncoupled
NLS! or s51 ~Manakov equations! the system of Eqs.~1a!
and~1b! admits soliton solutions that can be found by mea
of the inverse scattering method~ISM! @14,15#.

The soliton solutions of the system, Eq.~1! ~as well as of
some generalized versions of it!, has been the subject o
increasing interest~see, for instance,@16#!. This system with
additional linear symmetric self-coupling terms has be
studied by means of the quantum ISM@17#, while, more
recently, it was found that it can be transformed to the Ma
kov system, exhibiting thereby soliton solutions@18#. The
system of two CNLS equations including nonintegrab
terms has also been studied extensively. Exact vector so
solutions of the CNLS equations with a birefringent ter
have been reported@19,20#, while analytic solutions using a
Lagrangian variational method have also been obtai
@21,22#. Stability analyses have been performed@23–26# and
there is also a large amount of numerical work@27–30#.
Also, by using the ISM, a perturbed Manakov system@15#
and a system of higher-order CNLS equations@31# have also
been studied.

The dynamics of stationary-wave solutions of Eq.~1! can
be studied by reducing this system to a Hamiltonian, o
which is generally nonintegrable and only for some values
its parameters becomes integrable. Such Hamiltonian
tems, leading to stationary-wave solutions of Eq.~1!, have
1112 © 1998 The American Physical Society
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PRE 58 1113PHASE PLANE STÄCKEL POTENTIAL DYNAMICS OF . . .
been studied numerically~nonintegrable cases!. Some spe-
cial solutions in closed form were found analytically~inte-
grable cases! @32–34# as well.

On the other hand, it has been shown@35# that the multi-
component NLS can be reduced to an integrable infin
dimensional Hamiltonian system by considering travelin
wave solutions to Eq.~1!. However, solutions to this system
have not been given in closed form although the correspo
ing integrals have been given as such. This is not surpris
since it is well known in nonlinear dynamics of integrab
Hamiltonian systems that in many cases, while the integ
of motion are known explicitly, the solutions to the dynam
cal equations have not been found in closed form: In gene
finding the solutions of an integrable system is a nontriv
problem because it is directly connected with the determ
tion of the so-called separability conditions. Specifical
there has been no systematic study to date of the dynami
traveling-wave solutions of Eq.~1! along this line of reason
ing. However, from the physics point of view, explic
knowledge of the solutions could be of great importance
many cases.

In this paper, a complete investigation of a wide class
traveling-wave solutions is made, by reducing the system
Eq. ~1! to a Hamiltonian one. Specifically, Eq.~1! is reduced
to a system of two coupled nonlinear ordinary different
equations. The latter represents a two-dimensional Ha
tonian system, which describes the motion of two coup
quartic anharmonic oscillators. As it will be shown, analy
cal results can be obtained only fors51, that is, for the
Manakov system, since this is the only case in which
aforementioned dynamical system is integrable in the Li
ville sense, exhibiting one integral besides the Hamiltoni
The second integral has been given explicitly in@36# but the
solutions are not known in closed form. This system
shown to satisfy the Sta¨ckel conditions. Thus it is separab
in the Stäckel sense@37–39# and, therefore, its phase-spa
structure and asymptotic behavior~which incorporates
solitary-type envelope solutions to the system of interact
waves! are identifiable on the basis of a limited number
parameters. The Sta¨ckel character of a class of traveling
wave solutions of the Manakov system might possibly
tend the applicability of these solutions to a wider class
physical problems: Sta¨ckel potentials have been used exte
sively in the galactic dynamics where the construction
self-consistent models is mainstream research in this bra
of physics@40,41#, while the Manakov system mainly mod
els nonlinear plasma and optical processes. We will find t
under certain well specified conditions, solitary structu
may exist in the latter. Solitary structures also exist in
galactic dynamics. This underlying universality~from optics
and plasmas to galaxies!, a product of the same underlyin
~Hamiltonian! structure, is quite striking and, therefor
worth pursuing.

The traveling-wave solutions form a subspace of soluti
for the Manakov system. This subspace is well defined si
all periodic solutions are bounded. The solitary solutions
members of this subspace since they are the only asymp
solutions corresponding to unstable periodic solutions~in the
phase-space dynamical sense, not in the sense of the a
physical system they model!: To each unstable periodic so
lution correspond two manifolds~one stable and one un
-
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stable! on which lie the asymptotic phase space trajector
For the integrable case, which is going to be the focus of
work, the two manifolds coincide and their intersection w
the Poincare´ surfaces of section is the separatrices that c
respond to the solitary solutions. However, under certain
cumstances as we will see, the separatrices may sep
periodic solutions from unbounded ones. The latter will ha
physical meaning only for the time scales~in the traveling-
wave frame of reference! of applicability of Eq.~1!, other-
wise they cannot be considered as solutions to the Mana
system. The question about the magnitude of these t
scales compared with the time scale of evolution of the p
ticular physical system in hand is a very important, thou
open, question. This work will be the basis of addressing
issue in a future work as well as for dynamically studying t
general nonintegrable case (sÞ1). It is expected that the
latter will probably exhibit chaotic behavior as well.

The paper is organized as follows. In Sec. II, the red
tion of Eq.~1! to a system of two coupled nonlinear ordina
differential equations, the transformation, and the integrat
of the associated Hamiltonian system on the basis of Sta¨ck-
el’s method are presented; in the Appendix, the calculat
of the hyperelliptic integrals involved is outlined. In Sec. I
the utilization of the Sta¨ckel theorem leading to the separ
bility of the system as well as the solutions are presen
The domains of motion and the topological structure of
Poincare´ surfaces of section of the resulting Hamiltonia
system are investigated in Sec. IV. In this section the ch
acter ~elliptic or hyperbolic! of the periodic orbits~corre-
sponding to the nonlinear traveling-wave solution!, as well
as the stability issue associated with it, are analyzed in te
of a few basic parameters of the physical system in ha
Solitary type asymptotic solutions are also identified. Fina
in Sec. V the main conclusions are recapitulated.

II. DYNAMICAL ANALYSIS

The main idea of the dynamical analysis is to consid
traveling-wave solutions of Eq.~1! having the form

u~j,t!52x~s!exp@ i ~l1j2mt/2!#, ~2a!

v~j,t!52y~s!exp@ i ~l2j2mt/2!#. ~2b!

In Eq. ~2!, x(s) andy(s) are unknown envelope function
~assumed to be real!, which depend on the traveling-wav
coordinates. The physical significance of the arbitrary p
rametersm, l1 , andl2 is the following@42#: The parameter
m represents a shift of the frequency and is also related to
shift of the group velocity of the waves. The parametersl1
and l2 , on the other hand, are related to the shifts of
wave numbers of the waves. They cannot be simultaneo
eliminated by any suitable transformation to a moving fra
of reference: Although the system, Eq.~1!, is invariant under
Galilean transformation@43#, it can easily be shown, for ex
ample, that a choice for the velocity of the moving fram
U0 , that eliminatesl1 ~namelyU05m/2l1! renders the new
value ofl2 equal tol22l1 . Notice thatm50 implies that
the velocity of the wave is equal to the group velocity, t
shifts of the wave numbers ofu and v are equal tol1 and
l2 , respectively, and the trial solutions, Eq.~2!, correspond
to stationary waves. As is shown in@42#, it is also possible to
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connect these parameters with the initial conditions~that is,
with the initial information carried by the two interactin
modes! required to be a certain type~envelope, frequency
and wave number! of nonlinear mode initially launchable.

Upon substituting Eq.~2! into Eq. ~1!, the following non-
linear coupled ordinary differential equations can be o
tained:

ẍ1~l12m2/4!x14x~x21sy2!50, ~3a!

ÿ1~l22m2/4!y14y~y21sx2!50, ~3b!

where the notationẋ5dx/ds, ẍ5d2x/ds2, ẏ5dy/ds, ÿ
5d2y/ds2 has been introduced. These equations describe
motion of a particle in a two-dimensional central potent
V(x,y). The first integral of motion, namely the Hamiltonia
function, has the form

H~x,y,ẋ,ẏ!5 1
2 ~ ẋ21 ẏ2!1V~x,y! ~4!

while the potentialV(x,y) is given by

V~x,y!5Ax21By21~x21y2!212~s21!x2y2, ~5!

where

A5 1
2 ~l12m2/4!, B5 1

2 ~l22m2/4!. ~6!

The dynamical system represented by Eqs.~4! and ~5! de-
scribes the motion of two coupled quartic anharmonic os
lators. The caseA5B ~that is,l15l2! corresponds to equa
shifts ~leading to zero shifts under a proper Galilean tra
formation! in the wave numbers of the two waves. In th
case, the system is separable in parabolic coordinates a
has been studied in the literature@44#.

This system is integrable only fors51 @which means
that the original system, Eq.~1!, is reduced to the Manako
system#, exhibiting a second integral of motion@36#. The
Hamiltonian function of the integrable case,

H~x,y,ẋ,ẏ!5 1
2 ~ ẋ21 ẏ2!1Ax21By21~x21y2!2, ~7!

is the first integral of motion while a second one exis
namely,

I ~x,y,ẋ,ẏ!5~xẏ2yẋ!21~B2A!~ ẋ212x412x2y2

12Ax2!. ~8!

Both constants of the motion,H(x,y,ẋ,ẏ) and I (x,y,ẋ,ẏ),
are merely fourth- and second-order polynomials of the a
plitudes (uuu,uvu) of the wave envelopes and their~slow!
rates of change (duuu/ds,duvu/ds) in the moving frame of
reference, respectively. They are, therefore, closely c
nected with the local~in the moving frame! spectral energy
density and the rate of slow variations of the latter; howev
more precise physical interpretations are lacking. In the
-

he
l
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lowing, their arithmetic values, especially those of t
Hamiltonian function, will be merely considered as reflecti
the variation of the spectral energy density of the interact
nonlinear waves.

The overall problem of separability of the Hamiltonia
function lies in the potential functionV(x,y). As we will
see, this function is separable in elliptic coordinates. Th
the Stäckel procedure@37–39# can be applied which will
lead us to a special type of separability of equations of m
tion as we will see in the next section. The elliptic coord
natesQ1 andQ2 ~with the conventionQ2,Q1 , without loss
of generality! are defined as the two roots at the equation

x2

Q
1

y2

Q2C
51. ~9!

The real constantC plays only an auxiliary role and will
relate back to the parametersA and B that enter in the po-
tential function V(x,y). Since the Cartesian coordinate
(x,y) can be expressed with respect to (Q1 ,Q2) via the re-
lations

x25
Q1Q2

C
, y25

~Q12C!~C2Q2!

C
, ~10!

there follows a restriction imposed onQ’s ~two alternatives
for C.0 andC,0, respectively!,

Q1.0.Q2.C or Q1.C.Q2.0. ~11!

The value ofC can now be set via the following proce
dure: By differentiating Eq.~10! one readily yields forẋ and
ẏ

ẋ5
x

2 S Q̇2

Q1
1

Q̇2

Q2
D , ẏ5

y

2 S Q̇1

Q12C
1

Q̇2

Q22CD . ~12!

The generating function that yields Eq.~12! ~i.e., ẋ
5]F/]x, ẏ5]F/]y! as well as the conjugate toQ1 andQ2
momentsP1 and P2 , respectively~i.e., P152]F/]Q1 , P2
52]F/]Q2!, can readily be found,

F5
x2

4 S Q̇1

Q1
1

Q̇2

Q2
D 1

y2

4 S Q̇1

Q12C
1

Q̇2

Q22CD . ~13!

Upon evaluatingP1 andP2 , one can recastQ̇1 andQ̇2 in
terms of the new coordinates and moment, by inverting
respective expression,

Q̇15
4P1Q1~Q12C!

Q12Q2

, Q̇25
4P2Q2~c2Q2!

Q12Q2

. ~14!

The Hamiltonian function, Eq.~7!, now becomes, via Eqs
~10!, ~12!, and~14!,
H~Q1 ,Q2 ,P1 ,P2!5$2P1
2Q1~Q12C!22P2

2Q2~Q22C!1~Q11Q22C!2~Q12Q2!

1@AQ1Q21B~Q12C!~C2Q2!#~Q12Q2!C21%~Q12Q2!21. ~15!



,
ex

I

il-

th

in
e

Eq
,

se

h
co-
-

o-

l

t

d
nc-
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By choosing the parameterC such that

C5B2A, ~16!

the numerator of the expression Eq.~15! becomes separable
i.e., it can then be written as the algebraic sum of two
pressions, each one involving only one conjugate pair.
other words, the new Hamiltonian function becomes

H~Q1 ,Q2 ,B1 ,B2!

5

(
j 51

2

~21!32 jQj~Qj2C!~2Pj
21Qj1A!

Q12Q2
. ~17!

It is worth noticing that, in its new description, the Ham
tonian @Eq. ~17!#, being quadratic inQ, retains its initial
~weak! interpretation as a measure of the variation of
spectral energy density, since products ofQ’s are quadrati-
cally related to squares of the envelope amplitudes@Eq.
~10!#.

The second integral,I (Q1 ,Q2 ,P1 ,P2), Eq. ~8!, can also
be expressed in terms of the new canonical pairs. Utiliz
Eqs. ~10!, ~12!, and ~14! as well as the expression for th
new Hamiltonian function, Eq.~17! in Eq. ~8! yields

I ~Q1 ,Q2 ,P1 ,P2!5Qi@H~Q1 ,Q2 ,P1 ,P2!2~Qi2C!~2Pi
2

1Qi1A!#, i 51,2. ~18!

III. SEPARABILITY OF THE SYSTEM AND SOLUTIONS

The dynamical system at hand in its new description,
~17! can be made separable in the Sta¨ckel sense. In addition
using the expression for the second integral, Eq.~18!, we are
able to obtain the solutions of the system at hand in clo
or
ce
e

a
lip
-
n

e

g

.

d

form. The utilization of Sta¨ckel’s theorem allows us to reac
an equation that involves the following: The generalized
ordinatesQ1 andQ2 , the pair (h,i ) of values for the respec
tive generalized Hamiltonian, and the second integral of m
tion as well as the coordinates of referenceQ1(s0) and
Q2(s0). According to Sta¨ckel, one may introduce a potentia
function U(Q1 ,Q2) such that

Pj5
]U

]Qj
, j 51,2 ~19!

for fixed values for the respective Hamiltonianh
5H(Q1 ,Q2 ,]U/]Q1 ,]U/]Q2) and the second invarian
function i 5I (Q1 ,Q2 ,]U/]Q1 ,]U/]Q2) ~lower case de-
notes fixed values for the respective functions!. Equation
~18! then yields

Pj5~21!32 j S Qj@h2~Qj1A!~Qj2C!#2 i /2

2Qj~Qj2C! D 1/2

, j 51,2.

~20!

One can, therefore, deduce thatU(Q1 ,Q2) can be expressed
as a sum of two potential functions~each being depende
only upon a single generalized coordinate, namely, the fu
tions! U ( j )(Qj ) with j 51,2. Thus, Eq.~20! can be rewritten
as follows:

dU~ j !

dQj
5~21!32 j S Qj@h2~Qj1A!~Qj2C!#2 i /2

2Qj~Qj2C! D 1/2

,

j 51,2. ~21!

By integrating Eq.~21!, the value of the potential function
U(Q1 ,Q2) ~apart of an arbitrary constant! can readily be
obtained,
U~Q1 ,Q2 ;h,i !5(
j 51

2

~21!32 jEQj
dQj8S Qj8@h2~Qj81A!~Qj82C!#2 i /2

2Qj8~Qj82C!
D 1/2

. ~22!

Following Stäckel, one has

d
]U

]Qj 0
52

]H

]Qj 0
ds, ~23!

whereQj 0 plays the role of the initial canonical coordinates. Combining now Eqs.~22! and ~23! readily yields

dsA85(
j 51

2

dQj~21! j S Qj

~Qj2C!$Qj@h2~Qj1A!~Qj2C!#2 i /2% D
1/2

. ~24!
f
ed
se
are

i-
This expression can be integrated providing the temp
structure of an orbit on the planar subspa
(Q1 ,Q2), namely an expression of the typ
f (Q1 ,Q2 ;s;Q10,Q20;h,i )50. However, the evaluation of
such a function is confronted with expressing the hyperel
tic integrals@45# involved in the RHS of Eq.~24! in terms of
known functions.
al

-

In order to integrate Eq.~24!, knowledge of the domain o
variation ofQ1 andQ2 is necessary. It should be emphasiz
that the term ‘‘domain’’ refers to a specified orbit in pha
space, that is, the Hamiltonian and the second invariant
considered as fixed with valuesh and i , respectively.

In addition to the restriction originating from the coord
nate transformation, Eq.~11!, a real solution of Eq.~24! in



re

is
ca
e

pe

ins
e
al.
lu-

ns
-
ired
he

on
the

1116 PRE 58C. POLYMILIS, K. HIZANIDIS, AND D. J. FRANTZESKAKIS
the time domain imposes the following additional requi
ment:

Qj~Qj2C!$ i /21Qj@~Qj1A!~Qj2C!2h#%<0, j 51,2.
~25!

As far as the cubic polynomial within the curly brackets
concerned, there exist two cases to be examined: the
where there is only one real root,Q(1), and the case of thre
real roots,Q(1),Q(2),Q(3). For the first case it is readily
evident@by utilizing Eq. ~11!# that, independently ofC, Eq.
~25! cannot be satisfied. In the second case, also inde
dently of C, one obtains the following condition:
ce
en

ir

n-
n
tl
ca

lity
an
th
-

se

n-

Q~1!,Q2,Q~2!,Q1,Q~3!, ~26!

that is, an important physical result is obtained: the doma
of the values ofQ1 andQ2 are disjoint and bounded by th
~always! real roots of the aforementioned cubic polynomi
Therefore, the envelope values of the traveling-wave so
tions ~directly associated toQ’s via the elliptic transforma-
tion! exhibit the fundamental property that certain functio
of them~namely theQ’s! can be initially launched indepen
dently inside predefined domains depended upon the des
spectral characteristics. We will return to this subject in t
next section in detail.

The pair of values of the two constants of the moti
obviously provides a certain orbit that passes through
reference position ats5s0 . Integration of Eq.~24! yields
A8~s2s0!52E
Q1~s0!

Q1~s! dxAx

A~x2C!$x@h2~x1A!~x2C!#2 i /2%
1E

Q2~s0!

Q2~s! dxAx

A~x2C!$x@h2~x1A!~x2C!#2 i /2%
. ~27!

It can be easily seen by utilizing the results in the Appendix that, depending uponC, Eq. ~27! yields the following converging
series.

For C,0, 1>2Q1 /C,

s2s05
1

A8uCu
(
i 50

` S 1

4D i ~2i !!

~ i ! !2~2i 21! F I i
~1!S 1

12
Q1~s!

C
D 2I i

~1!S 1

12
Q1~s0!

C
D 1I i

~3!S 12
Q2~s!

C D2I i
~3!S 12

Q2~s0!

C D G .

~28a!

For C,0, 2Q1 /C>1,

s2s05
1

A8uCu
(
i 50

` S 1

4D i ~2i !!

~ i ! !2~2i 21! F ~21! i I i
~2!S 2

C

Q1~s! D2~21! i2I i
~2!S 2

C

Q1~s0! D1I i
~3!S 12

Q2~s!

C D
2I i

~3!S 12
Q2~s0!

C D G . ~28b!

For C.0,

s2s052
1

A8uCu
(
i 50

` S 1

4D i ~2i !!

~ i ! !2 F I i
~4!S 2

C

Q1~s! D2I i
~4!S C

Q1~s0! D1
1

2i 21
I i

~5!S 12
Q2~s!

C D2
1

2i 21
I i

5S 12
Q2~s0!

C D G ,
~28c!
si-

tates
uire

the

at

of
where the functionsI i
(g) are connected through recurren

relations to three basic functions of the same argum
namely,I 21

(g) , I 0
(g) , and I 1

(g) . The latter, in turn, are directly
related to the elliptic integrals of the first, second, and th
kind ~see the Appendix!. The superscriptg51,2,...,5 refers
to five distinct recurrence relations.

Equations~28! provide the orbits in the generalized co
figuration spaceQ1-Q2 . However, the temporal connectio
between these two dynamical variables is only indirec
provided by these equations since only the time variable
explicitly be expressed in terms of a series of functions ofQ1

andQ2 and not vice versa. There exists a remote possibi
Eq. ~28!, to be invertible, though the inversion seems
extremely arduous task and goes beyond the scope of
t,

d

y
n

,

is

work. Instead, it is highly important to investigate the pos
bility of the quasiperiodic behavior ofQ1 andQ2 , as well as
the existence of nondegenerate bounded asymptotic s
~that is, states of vanishing nonlinear frequency that acq
finite Q’s and P’s!. The latter correspond tosolitary enve-
lope solutions x(s) and y(s) of the problem at hand. The
study can be facilitated by investigating the structure of
phase space considering a Poincare´ surface of section.

IV. POINCARÉ SURFACE OF SECTION.
DOMAINS OF MOTION AND TOPOLOGY

The study of the dynamics of the Hamiltonian system
hand @in terms of the second integral, Eq.~18!# is highly
facilitated by studying the topological features of the sets



o
ce

ue
r
e
iod
ne

th
o

he
e

ia

ac

e
r-
te
gr

n

ab

d

n-

rs

bits
-

c-

al
ively
or
lso

a-
ple
u-
e

ra-
ber

-
e
Eq.

-

t of
ers
aria-
x-

,
ure

on

il-

ves
ral
hird

e

tive

ese

e
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points of successive intersections of a trajectory with a tw
dimensional surface in the phase space. On such a surfa
section@either (Q1 ,P1) or (Q2 ,P2)#, the so-called Poincare´
surface of section, a trajectory of fixed Hamiltonian val
provides a set of points of intersection that forms an inva
ant curve. Each invariant curve corresponds to a differ
value of the second integral and represents a quasiper
orbit located on a two-dimensional torus and is also confi
on the surface H(Q1 ,Q2 ,P1 ,P2)5h of the four-
dimensional phase space. In this space, it is well known
the invariant curves are the intersections of the tw
dimensional tori with the surface of section. According to t
Kolmogorov-Arnold-Moser~KAM ! theorem, and since th
system is integrable, for thesamearithmetic value of the
energy the set of the tori is continuous and thus the invar
curves, corresponding todifferent arithmetic values of the
second integral, are continuously distributed on the surf
of section.

Of special interest are the invariant points that repres
periodic orbits on a Poincare´ surface of section. On the su
face of section the location of the periodic orbits of an in
grable system can be found in terms of the second inte
@46#, by setting

]I

]Qj
5

]I

]Pj
50. ~29!

Solving Eq.~29! leads to a set of points~Qj ,Pj ; j 51 or 2!
on the respective Poincare´ surfaces of section@on (Q1 ,P1)
or (Q2 ,P2) planes#, which correspond to periodic orbits. O
the other hand, depending upon the sign of the quantity

D[
]2I

]Qj
2

]2I

]Pj
22S ]2I

]Qj]Pj
D 2

, j 51 or 2, ~30!

where the derivatives are taken at the solution of Eq.~29!,
the corresponding periodic orbits are characterized as st
~D.0, i.e., elliptic points! or as unstable~D,0, i.e., hyper-
bolic points!. For the Hamiltonian system at hand, we fin
the periodic orbits by using the second integral~18!. Then
solving Eq.~29!, the periodic orbits solutions are six in ge
eral,

Qj50, Pj56~Q1Q2/2C!1/2, ~31a!

Qj5C, Pj56$@C~2Q223C!2Q1~Q222C!#/2C%1/2,
~31b!

Qj5Q1
~6 ! , Pj50, ~31c!

whereQ1
(6) are given by

Q1
~6 ![

Q11Q26~Q1
2 1Q2

2 2Q1Q2!1/2

3
~32!

andQ6 are parameters, functions ofh, A, andB, given by

Q6[2A1
B

2
6S B2

4
1hD 1/2

. ~33!

It is straightforward, though lengthy, to show that the fi
and the second pair of periodic orbits in Eq.~31! ~when they
-
of
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possess real-valued generalized momenta! always corre-
spond to unstable periodic orbits~hyperbolic points on the
respective Poincare´ surface of section!. As far as the third
pair is concerned, it corresponds to stable periodic or
~elliptic points! as long as the following condition is satis
fied:

6Q1
~6 !~Q1

~6 !2C!1/2.0. ~34!

The elliptic and the hyperbolic points will be called, respe
tively, s points and3 points thereafter~j 51 or 2!.

A. The character of the periodic orbits
and the parameter space

It is well known from the basic theory of the dynamic
systems that the separatrices separate regions of qualitat
different types of motion. As far as the stationary
traveling-wave solutions of the NLS are concerned, it is a
well known that separatrices correspond to asolitary typeof
solution: Asymptotic states of periodic~in the traveling-wave
coordinates! nonlinear waves of infinite period@47#. Such
types of solutions in the problem at hand will be of par
mount importance: In wave-related applications, for exam
~such as in optics!, the solitary nature of the envelope sol
tions to Eq.~1! will assure the possibility of modulated puls
propagation in the associated medium, and so on.

The topological features of the aforementioned sepa
trices are tightly connected with the position and the num
of the 3 points, which the particular choice of the param
etersA, B, and h allows. It was already mentioned in th
preceding section that the two pairs of points defined by
~31! are always~when they do exist! 3 points lying on the
lines Qi50 andQi5C. The character of the third pair de
pends upon the choice of the parametersA, B, andh. As we
already mentioned in the preceding sections, the latter se
parameters is directly related with shifts in the wave numb
and frequencies as well as the spectral energy density v
tion of the interacting waves. In order to investigate the e
istence and the character of all3 ands points involved in
the topological structure of the Poincare´ surfaces of sections
a very informative and comprehensive view of the struct
and the respective dynamical behavior is devised based
this particular set of parameters.

One can construct for a specified value of the Ham
tonian,h, a chart on the (A,B)-parameter plane~Figs. 1 and
2!. On each such chart there exists a network of cur
f (A,B;h)50, which divide the parameter space into seve
subspaces corresponding to a different character of the t
pair of the periodic orbitsQj5Q1

(6) , Pj50 ~33, ss, 3s,
ands3 with the first character symbol referring toQ1

2 and
the second toQ1

1!. The several levels of shading refer to th
status~existence or no existence! of the first two pairs of Eq.
~31!. Figures 1 and 2 refer to the respective cases of posi
and negative Hamiltonian values,h.

For the caseh.0 ~h54 in the example shown! there
exist sixteen subregions. The network of borderlines of th
subregions consists of the curvesA5B, A5B/2, A52B, h
5B(B2A), and h5A(A2B). The subregions, which ar
white, refer to a choice in (A,B) that allows only the third
pair @given by Eq.~31c!# of periodic orbits to exist. These
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orbits are both elliptic~subregions 3 and 6! or both hyper-
bolic ~subregions 14 and 16! in character. In the light-gray
subregions~totally four subregions: 2, 7, 10, and 11! only the
second and the third pair of periodic orbits exist@Eq. ~31b!
and ~31c!#. The character of the third pair is mixed~one
hyperbolic and one elliptic!. Symmetrically to the previous
set of subregions~with respect to theA5B axis of symme-
try! lie four subregions indicated by a gray color~1, 8, 9, and
12!. In these subregions only the first and the third pa
exist. The latter corresponds to orbits of opposite charac
as before. In the remaining four subregions, indicated b
dark-gray color, all three pairs of periodic orbits exist a
both orbits of the third pair have the same character: hyp
bolic in 4 and 5 and elliptic in 13 and 15.

For the caseh,0 ~h522 in the example shown!, on the
other hand, there exist six subregions. The respective
work of borderlines are the curvesh5B(B2A), h5A(A
2B), A5B, A522uHu1/2, andB522uHu1/2. In the white
quadrant to the left and above the latter two lines, resp
tively, there exist no choices in the parameter valuesA andB
that render physically meaningfulx’s andy’s @that is, a non-
negative value of the ‘‘kinetic energy’’h2V(x,y)#. In the
two light-gray subregions~2 and 4! only the second and th
third pair of periodic orbits exist@Eq. ~31b! and ~31c!# and
the character of the third pair is mixed~one hyperbolic and
one elliptic!. Symmetrically to the previous set of subregio
~with respect to theA5B axis of symmetry! lie two subre-
gions indicated by a gray color~1 and 3!. In these subregions
only the first and the third pairs exist. The latter correspo
to orbits of opposite character, as before. In the remain
two subregions 5 and 6, indicated by a dark-gray color,
three pairs of periodic orbits exist and both orbits of the th
pair are elliptic.

FIG. 1. (A,B)-parameter space forh54. The character of the
third pair of periodic orbits is indicated@with the first ~second!
character symbol referring toQ5Q1

2 (Q5Q1
1)# along with the

status of the first two pairs~always hyperbolic! in the sixteen sub-
regions: White, only the third pair exists; light gray, only the seco
and the third pairs exist; gray, only the first and the third pairs ex
dark gray, all three pairs of periodic orbits exist.
s
r,
a

r-

t-

c-

s
g
ll

B. Structure of the phase space

The permissibleregion of motion in the phase space
defined via the requirement of the ‘‘kinetic energy’’ part

d
t;

FIG. 2. (A,B)-parameter space forh522. The character of the
third pair of periodic orbits is indicated@with the first ~second!
character symbol referring toQ5Q1

2 (Q5Q1
1)# along with the

status of the first two pairs~always hyperbolic! in the six subre-
gions: Light gray, only the second and the third pairs exist; gr
only the first and the third pairs exist; dark gray, all three pairs
periodic orbits exist; white, there exist no choices in the param
valuesA and B that render a non-negative value of the ‘‘kinet
energy’’ h2V(x,y).

FIG. 3. Poincare´ surface of section for a case with@C,Q2

,Q1 , Q1
(2),C#. The dashed curves correspond to the contoui

50. The thick solid curves are the separatrices. The vertical
coincides with the lineQ5C. The elliptic and the hyperbolic points
are denoted, respectively, by a circle and a thick dot. Contour
constant value of the second invariant,I , are shown.
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the Hamiltonian function being non-negative. For a fix
value of the Hamiltonian,h ~that is, for a fixed envelope
amplitude variation!, this requirement, expressed in terms
the coordinatesQ1 andQ2 , can be shown that it leads to th
following:

at Pi50:Q2
~2 !,Qi,Q2

~1 ! , i 51,2, ~35!

where the parametersQ2
6 are defined by
fo

ly

a
ar

a

r
se

o

f
Q2

6[
Q11Q262~Q1

2 1Q2
2 2Q1Q2!1/2

3
, ~36!

where Q6 are given by Eqs.~33!. This means that for a
given arithmetic valueh of the Hamiltonian, the topologica
structure of the invariant curves inside the permissible reg
of motion depends upon the ordering of the parametersQ6

andC and, occasionally, upon the ordering of the parame
Q1

(2) andC.
We find seven topologically distinct cases by using t

condition~35! and Eqs.~32!, ~33!, and~36!. These cases ar
respectively shown:
1: 0,C,Q2,Q1 @1a: Q1
~2 !,C, 1b: C,Q1

~2 !#; 2: C,0,Q2,Q1 ; 3: C,Q2,0,Q1 ;

4: 0,Q2,C,Q1 ; 5: Q2,C,0,Q1 @5a: Q1
~2 !,C, 5b: C,Q1

~2 !#. ~37!
ing

by

tour
se,
-
ot.
We notice that for a given orbit in the phase space and
a given arithmetic valueh of the Hamiltonian, the orbit in-
tersections with the subspaces (Q1 ,P1) or (Q2 ,P2) are to-
pologically identical. Therefore, it is sufficient to study on
the various plane curves (Q1 ,P1) that correspond to differ-
ent choices of the values of the Hamiltonian.

Choosing suitable values for the parametersh, A, andB,
in Figs. 3–9 the corresponding Poincare´ surface of section of
the above seven distinct cases is shown. In all cases~37!,
once the set of parameter values is chosen the location
the stability character of the corresponding periodic
found, by using Eqs.~31!, ~32!, ~33!, and the condition~34!.
The s points and3 points are denoted by a circle and
thick dot, respectively.

FIG. 4. Poincare´ surface of section for a case with@C,Q2

,Q1 , C,Q1
(2)#. The dashed curves correspond to the contoui

50. The thick solid curve is the separatrix, which, in this ca
coincides with the contouri 5I min . The elliptic and the hyperbolic
points are denoted, respectively, by a circle and a thick dot. C
tours of constant value of the second invariant,I , are shown.
r

nd
e

The permissible region extends within the correspond
limiting curves. These curves, when they intersect theQ
axis, do it at one or both pointsQ5Q2

(6) . Also the limiting
curves are invariant curves and thus they are calculated
using the form of the second invariant Eqs.~19!. Calling the
corresponding values of the second invariantI min and I max,
they are found as functions of the parametersA, B, andh.
Their expressions in terms ofQ6 are

I min5
2

27
@Q1

3 1Q2
3 1~Q12Q2!3

22~Q1
2 2Q1Q21Q2

2 !3/2#, ~38a!

n-

FIG. 5. Poincare´ surface of section for a case withC,0,Q2

,Q1 . The dashed curve and vertical line correspond to the con
i 50. The thick solid curve is the separatrix, which, in this ca
coincides with the contouri 5I min . The sole elliptic and the hyper
bolic points are denoted, respectively, by a circle and a thick d
Contours of constant value of the second invariant,I , are shown.
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I max5
2

27
@Q1

3 1Q2
3 1~Q12Q2!3

12~Q1
2 2Q1Q21Q2

2 !3/2#. ~38b!

The thick solid curves, in Figs. 3–9, correspond to sepa
trices that pass through the unstable periodic orbits~hyper-
bolic points on the surface of section!. These separatrice

FIG. 6. Poincare´ surface of section for a case withC,Q2,0
,Q1 . The thick solid curves are the separatrices, which, in t
case, coached with the contouri 50. The elliptic and the hyperbolic
points are denoted, respectively, by a circle and a thick dot. C
tours of constant value of the second invariant,I , are shown.

FIG. 7. Poincare´ surface of section for a case with 0,Q2,C
,Q1 . The thick solid curves, except for the rightmost one, are
separatrices. The leftmost one, along with the dashed curve in
right, are contours ofi 50. The rightmost thick solid curve is als
an i 50 contour. The elliptic and the hyperbolic points are denot
respectively, by a circle and a thick dot. Contours of constant va
of the second invariant,I , are shown.
a-

correspond to the asymptotic solutions of the system
separate the phase space in regions of a different typ
‘‘motion.’’ We have also calculated many invariant curve
These curves represent quasiperiodic orbits and corresp
to different arithmetic valuesI of the second invariant de
pending on the initial conditions. Thus the invariant curv

s

n-

e
he

,
e

FIG. 8. Poincare´ surface of section for a case with@Q2,C
,0,Q1 , Q1

(2),C#. The thick solid curves are the separatrice
which, in this case, coached with the contours ofi 50. The elliptic
and the hyperbolic points are denoted, respectively, by a circle
a thick dot. Contours of constant value of the second invariantI ,
are shown.

FIG. 9. Poincare´ surface of section for a case with@Q2,C
,0,Q1 , C,Q1

(2)#. The thick solid curves, except for the righ
most one, are the separatrices. The vertical lineQ50 ~a separatrix!
and the separatrix that intersects it coached, in this case, with
contour of i 50. The rightmost thick solid curve is also ani 50
contour. The elliptic and the hyperbolic points are denoted, resp
tively, by a circle and a thick dot. Contours of constant value of
second invariant,I , are shown.



s
e

o
s

v
a

en

tic
t
a

fo
on

el

r
se
le
an

e
s

um

f
o
ic

oli

ti
tic
e

g
lo
in
l
to

lu

hi

th

f

tate
-
e
ub-

o
n
ded

i-
exist
r the

d-

nd
-

r
he
, or

ed

s of

to
solid
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are calculated, because the system is integrable, in term
the second integral Eqs.~19! instead of the calculation of th
orbits. The value of the second invariant can be positive
negative~namely,i .0 or i ,0!. The dashed lines and curve
correspond to the contouri 50 whose intersection with the
Q axis is one or both pointsQ5Q6 . We notice that the
permissible region for the cases 1a, 1b, and 4~Figs. 3, 4, and
7! is defined by the limiting curves and the lineQ50. The
latter line becomes, instead, the lineQ5C for the cases 5a
and 5b for Figs. 8 and 9.

It is now evident that all the information about the beha
ior of the system at hand can be obtained in an explicit w
in terms of its second integral. In other words, for giv
values of the parametersA, B, andh ~directly related to the
spectral characteristics if one aims towards nonlinear op
applications, for example! a variety of quantities of grea
practical interest can then be easily evaluated or, at le
estimated: The set of the required initial conditions
launching, the boundaries of the envelope solution variati
with s, and, most importantly, the kind of motion~solitary or
otherwise! and the asymptotic solutions themselves as w

C. Asymptotic solutions

The asymptotic solutions, corresponding to the sepa
trices, are of great physical importance since they repre
generally solitary or/and soliton solutions. Thus a detai
discussion of the asymptotic solutions of the system at h
is needed.

All seven subcases~37! of the problem at hand, from th
point of view of the form of the asymptotic states they po
sess, can be grouped into four distinct families that are s
marized and tabulated in Fig. 10.

In the subcase 1a, illustrated in Fig. 3~0,C,Q2,Q1

with Q1
(2),C!, it is clear that there exists a pair o

asymptotic trajectories in the phase space whose corresp
ing invariant curves on the surfaces of section are the th
solid curves passing through the pairs of the hyperb
points lying on the linesQ15C, Q25C. Furthermore, they
correspond to anegativevalue of the second invariant~sub-
domainsb!. The curved branches of these two asympto
states coincide and are bounded. The respective ver
branches are complementary~one line segment between th
two hyperbolic points and one pair of semi-infinite lines!.
They actually form a pair of identical sets of three line se
ments. The curved branches correspond to solitary enve
solutions of the physical system at hand. The two coincid
states ~Q15C and Q25C! on the two sets of vertica
branches, on the other hand, are degenerate asymp
states: In terms of the envelope functions@utilizing Eq. ~10!#
they correspond to the statesx(s)561 andy(s)50.

One may observe a similar structure for the subcase il
trated in Fig. 6, namely, subcase 3 in Eq.~37!: The pairs of
hyperbolic points lie on the vertical linesQ150, Q250 and
the two coinciding states~Q150 andQ250! on the respec-
tive sets of vertical branches are the degenerate ones, w
in this case, are the~identical! statesx(s)50 andy(s)50.
The value of the second invariant for the appearance of
solitary envelope solution iszero in this subcase.

The subcases that are illustrated in Figs. 4, 5, and 8@sub-
cases 1b, 2, and 5a in Eq.~37!# do not possess pairs o
of
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bounded asymptotic solutions: The bounded asymptotic s
for Q1 is accompanied by an unbounded~and nondegener
ate! asymptotic one forQ2 and vice versa. The respectiv
values of the second invariant for the first two of these s
cases are theminimum ~and negative! ones. As far as the
third subcase is concerned, the second invariant iszero.

The situation is somewhat different for the remaining tw
subcases illustrated in Figs. 7 and 9@subcases 4 and 5b i
Eq. ~37!#. Again, these subcases do not possess boun
asymptotic solutions: The bounded asymptotic state forQ1 is
accompanied by an unbounded~and nondegenerate!
asymptotic one forQ2 and vice versa, as in the three prev
ous cases. However, one can readily observe that there
two such combinations in each one of these subcases: Fo
first one ~Fig. 7! two bounded-unbounded pairs forzero
value of i ~between regionsa andb! and two forpositive i
~the regionsa in the vicinity of Q5C!. As far as the second
one ~Fig. 9! is concerned, there exist two bounde
unbounded pairs forzerovalue of i ~between regionsa and
b in the vicinity of Q50! and two fornegativevalue ofi ~in
the remaining regionsb!.

Figures 1, 2, and 10 provide, in a comprehensive a
illustrative way, information about the possibility of launch
ing a traveling mode (u,v) possessing a solitary~spatially or
temporally localized in the moving frame! envelope of given
A, B, andh. At the same time, they provide information fo
all the nonlinear modes whose limiting forms are all t
possible asymptotic states, namely, solitary, unbounded

FIG. 10. The seven subcases 1: 0,C,Q2,Q1 @1a: Q1
(2)

,C, 1b: C,Q1
(2)#; 2: C,0,Q2,Q1 ; 3: C,Q2,0,Q1 ;

4: ,Q2,C,Q1 ; 5: Q2,C,0,Q1 @5a: Q1
(2),C, 5b:

C,Q1
(2)# with characterization of regular~quasiperiodic or un-

bounded nonperiodic! states and/or asymptotic states: BA, bound
asymptotic; QP, quasiperiodic; UA, unbounded asymptotic;U, un-
bounded. Only in the subcases 1a and 3 do there exist pair
bounded asymptotic solutions~solitary! for the envelopes of the
interacting wave forms. The thick solid curves correspond
asymptotic states that can be bounded or unbounded. The thin
curves correspond to regular states.
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degenerate. Therefore, since the basic parametersA,B are
directly associated with the nonlinear shifts in frequency a
wave number of the carrier~as we saw in the Introduction!,
the latter plays a dominant role in ‘‘shaping-up’’ the env
lope (x,y).

V. CONCLUSIONS

A complete investigation of a wide class of travelin
wave solutions is made, by reducing a system of two coup
nonlinear Schro¨dinger ~NLS! equations when it represen
the so-called Manakov system, in a dynamical system
admits soliton solutions. The reduced system is a tw
dimensional Hamiltonian one, which describes the motion
two coupled quartic anharmonic oscillators. This dynami
system is integrable, exhibiting one additional integral b
sides the Hamiltonian, which can be explicitly written ev
without knowing the solutions in closed form.

The reduced Hamiltonian system is shown to be separ
in the Stäckel sense by transforming it to a new coordina
system (Q,P). The utilization of the Sta¨ckel’s theorem al-
lowed us to find the solutions, involving hyperelliptic inte
grals. Series expressions of the latter in closed form in te
of the three elliptic integrals were given on the basis o
limited number of parameters and the initial condition
Among these solutions, there exist several that correspon
solitary-type envelope solutions to the Manakov system.

The existence of two integrals of motion facilitated a tho
ough study of the system: The structure of the phase sp
was completely understood by investigating the express
of the second integral for a given arithmetic value of the fi
integral and using a Poincare´ surface of sections. We notice
that the arithmetic value of the first invariant, namely t
Hamiltonian, depends upon the particular choice of en
lope, namely on the set of values (x,dx/ds,y,dy/ds) at a
reference value of the traveling-wave coordinates and the
type of the traveling waves to which one is aiming, which,
turn, relates to the spectral energy density variations of
interacting wave forms. On the other hand, the mere e
tence of the second integral implies that there exists an
variant relationship between the envelope amplitudes
their respective rate of change~with s!.

For any given set of values for the parameters of the s
tem, the position of the fixed points~representing periodic
orbits! as well as their stability character were easily det
mined. This is important since the existence of fixed point
directly associated with the periodic character of the en
lope of the traveling-wave solutions to the Manakov syste
Special emphasis was given to the hyperbolic ones since
directly correspond to a solitary type of envelope structu
The asymptotic curves~the separatrices that correspond
the hyperbolic fixed points! defining several regions in th
permissible ‘‘area of motion’’ in the phase space were th
also identified. Therefore, different types of motion asso
ated with different sets of initial conditions and especia
various quasiperiodic modes~or trajectories, in the nomen
clature for the dynamical systems! of the Manakov system
were completely identified within these regions. T
asymptotic behavior of these trajectories was thoroug
d
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studied since the asymptotic states correspond to the se
trices in the phase space. All possible asymptotic states w
easily identified~namely, solitary, unbounded, or degenera!
whose character depended upon the behavior and valu
the second invariant~integral of motion!. They were also
categorized and presented in a systematic way in a th
dimensional parameter space spanned byA, B, andh. The
choice of parameters was based on the fact thatA,B are
associated with the nonlinear shifts in frequency and w
number of the carrier directly, which, in turn, are related
the initial information content of the two interacting mod
that the Manakov system models while the value ofh ~com-
plicated invariant dynamical function! reflects the spectra
energy content carried by the interacting modes. A basic o
come of this description is the following: For given values
the parameters~A, B, andh! a (Q1 ,P1) invariant curve~on
its respective Poincare´ surface of section! is confined inside a
subregion, corresponding to a particular value,i , of the sec-
ond invariant. Simultaneously, the respective (Q2 ,P2) in-
variant curve with thesame value (i) of the second invarian
is confined in a subdomain that corresponds to a complem
tary subdomain@i.e., the sameA, B, h, and i but of a ~dis-
jointedly! different set of initial conditions# on the (Q1 ,P1)
Poincare´ surface of section.

Finally, as far as future investigations are concerned,
work will be the basis of dynamically studying the gene
nonintegrable case (sÞ1), which is expected to exhibit cha
otic behavior as well. Furthermore, the physical meaning
the unbounded solutions, as well as the magnitude of
traveling-wave coordinate scales in Eq.~1! as compared with
the scales of evolution of the particular physical system
hand, is an open question. These studies are currentl
progress.
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APPENDIX

The integrals involved in Eq.~27! contain a fourth-order
polynomial under the square root sign in the denominato
is well known@45# that, if the numerator is an integer powe
of the integration variable, integrals with such denominat
can always be expressed through recurrence relation
terms of the three elliptic integrals~first, second, and third
kind!. The numerator at hand is the square root of the in
gration variable. One can always find a transformation of
integration variable that leads to a numerator of the fo
(12x)1/2 with uxu<1 ~the denominator transforms to a ne
fourth-order polynomial under the square root sign!. Then
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(12x)1/2 can be expressed in terms of a converging serie
powers of the new integration argument. Therefore, one
then make use of the aforementioned property of integ
with such numerators.
f t

e

t.
of
n

ls

This approach has been followed in calculating the hyp
elliptic integrals involved in Eq.~27!. After a straightfor-
ward, though lengthy, calculation, one obtains the followi
recurrence relation:
I m
~g!~x!5

2xS (
n50

n53

an
~g!x42nD 1/m23

2 (
n51

n53

an
~g!@2~m21!2n#I m2n

~g! ~x!

2a0
~g!~m21!

, ~A1!

where

a0
~1!5

1/2C2h

C2 , a1
~1!511

A

C
1

h

C2 , a2
~1!52

A

C
, a3

~1!521, ~A2a!

a0
~2!5

i

2C3 , a1
~2!5

A

C
1

h

C2 , a2
~2!5

A

C
21, a3

~2!521, ~A2b!

a0
~3!51, a1

~3!52
A

C
22, a2

~3!511
A

C
2

h

C2 , a3
~3!5

h2 i /2C

C2 , ~A2c!

A0
~4!52

i

2C3 , a1
~4!5

A

C
1

h

C2 , a2
~4!512

A

C
, a3

~4!521, ~A2d!

a0
~5!521, a1

~5!521
A

C
, a2

~5!5212
A

C
1

h

C2 , a3
~5!5

i /2C2h

C2 . ~A2e!
rent
ble
The argumentsx of the functionsI m
(g)(x) are (12Q/C)21,

2C/Q, 12Q/C, C/Q, and 12Q/C, respectively, forg
51,2,...,5. The requirements onQ’s in these arguments in
order to ensure convergence of the series expansion o
numerator of the integrants in Eq.~27! are, respectively,
(C,0,Q,2Q/C,1), (C,0,Q,1,2Q/C), (C,Q
,0), (0,C,Q), and (0,Q,C), where Q may either
be Q1 or Q2 . Since the domains of variation ofQ’s
are restricted by Eq.~11!, one can easily observe that th
he

possible combinations of functions forQ1 and Q2 are
two: ~a! typesI m

(1)(x) or I m
(2)(x) for Q1 combined with type

I m
(3)(x) for Q2 ; ~b! type I m

(4)(x) for Q1 combined with type
I m

(5)(x) for Q2 . Therefore, the integral in Eq.~27! can be
expressed as a series of these functions in three diffe
ways depending upon the domain of variation of the varia
Q1(t) @and the reference valueQ1(t0)#, namely, ~i! C,0
and 1>2Q1(t)/C; ~ii ! C,0 and 2Q1(t)/C>1; ~iii ! C
.0.
A
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