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Phase plane Stakel potential dynamics of the Manakov system
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A wide class of traveling-wave solutions of the Manakov system of coupled nonlineard8weo equations
is found to possess a potential which leads to separability in thek@taense exhibiting two integrals of
motion, which facilitates a thorough investigation of this system by nonlinear dynamics phase plane methods.
On this basis, specific types of nonlinear waves are identified via a complete phase space trajectory investiga-
tion. The topological features of the phase space structure and the asymptotic behavior of the trajectory
families involved are studied. Time domain analytical solutions are provided involving hyperelliptic integrals
and their series expressions of the latter, in terms of the three elliptic integrals. Among the trajectory families,
solitary-type envelope solutions to the Manakov system are easily identified on the basis of a limited number
of parameters.S1063-651X%98)07007-X]

PACS numbeps): 03.40.Kf, 46.90+s, 42.81.Dp, 42.65.Tg

I. INTRODUCTION modulation(CPM), or the interaction of two different polar-
izations,u andv, in single-mode birefringent optical fiber
[8-10] in the limit where wave mixing is neglectdd.g., in
the presence of rapid walkoff between the interacting
modes. In this case, the coupling coefficientdepends on

It is widely known that the system of two coupled non-
linear Schrdinger (NLS) equations, can be expressed in di-
mensionless form as follows:

_du  d%u ) ) the ellipticity of the fiber eigenmode, and in particular,

! 9E %*’U(M +alvl?), (1a  —2/3 for linearly polarized modes, and, in the general case,
2/3<o=<2 for elliptical eigenmodes. The special value,

v v 5 ) =1, corresponds to at least two possible cases, namely the

il +o([v|*+alul?). (1b)  case of a purely electrostrictive nonlineafiyl, 12 or, in the

case of elliptical birefringence, when the angle between the

In Egs.(1a) and(1b), u(¢,7) anduv(¢,7) are slowly varying major and the minor axes of the birefringence ellipse is ap-
envelopes¢ and 7 are normalized propagation distance andproximately 35°[7]. Notice that for this valueg=1, Egs.
local time, respectively, while the coupling coefficiemtis (1a) and(1b) represent the so-called Manakov systglf],
the ratio between the cross- and self-phase modulation convhich is an integrable version of the system of two coupled
tributions to the nonlinear effects. For=@, Eq. (1) is the  NLS (CNLS) equationg14]. Actually, for =0 (uncoupled
so-called Manakov system. NLS) or o=1 (Manakov equationsthe system of Eq91a)

This system can effectively describe the interaction of theand(1b) admits soliton solutions that can be found by means
envelopes of two carrier waves in dispersive media exhibitof the inverse scattering methgtM) [14,15.
ing a cubic nonlinearity and, therefore, it(f® some extent The soliton solutions of the system, Hd) (as well as of
universal from the point of view of its applications in phys- some generalized versions of,ithas been the subject of
ics. For example, it may effectively describe interactionsincreasing interesisee, for instancg,16]). This system with
among various wave modes in plasmas, ion-acoustic tadditional linear symmetric self-coupling terms has been
Langmuir[1,2], or Langmuir to electromagnetic modgs. studied by means of the quantum ISM7], while, more

Especially, in the field of the nonlinear optics the follow- recently, it was found that it can be transformed to the Mana-
ing applications can be listed that are distinguished by thé&ov system, exhibiting thereby soliton solutiofik8]. The
values of the coefficient: For =0, Eq. (1) represents a system of two CNLS equations including nonintegrable
system of two uncoupled NLS equations, which govern thgerms has also been studied extensively. Exact vector soliton
propagation of slowly varying electromagnetic waves in non-solutions of the CNLS equations with a birefringent term
linear optical fibers in the anomalous dispersion regidle  have been reported 9,20, while analytic solutions using a
In this caseu (or v) represent the complex-valued pulselike Lagrangian variational method have also been obtained
envelope of the electric field distributiogjs the normalized [21,27. Stability analyses have been perfornigd—26 and
spatial variable along the propagation distance anmslthe there is also a large amount of numerical wdg—30Q.
normalized time in the reference frame moving with theAlso, by using the ISM, a perturbed Manakov systglh|
group velocity. Fore<1, Eq. (1) governs the dynamics of and a system of higher-order CNLS equatipd¥| have also
the interaction of two modes in nonlinear optical fibgs$  been studied.
or in directional couplers with weak intermodal coupling in  The dynamics of stationary-wave solutions of ED. can
the high-intensity limif6,7]. In this caseu andv represent be studied by reducing this system to a Hamiltonian, one
the complex valued envelopes of the two modes. which is generally nonintegrable and only for some values of

The system of Eggi1a and(1b) governs also the inter- its parameters becomes integrable. Such Hamiltonian sys-
action of two optical modesy andv, through cross-phase tems, leading to stationary-wave solutions of Etj, have
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been studied numericallgpnonintegrable casgsSome spe- stablg on which lie the asymptotic phase space trajectories.
cial solutions in closed form were found analyticalipte-  For the integrable case, which is going to be the focus of this
grable caseq32-34 as well. work, the two manifolds coincide and their intersection with
On the other hand, it has been shol8s] that the multi-  the Poincaresurfaces of section is the separatrices that cor-
component NLS can be reduced to an integrable infiniter€spond to the solitary solutions. However, under certain cir-
dimensional Hamiltonian system by considering traveling-cumstances as we will see, the separatrices may separate
wave solutions to Eq(1). However, solutions to this system Periodic solutions from unbounded ones. The latter will have
have not been given in closed form although the correspond2Nysical meaning only for the time scaléa the traveling-
ing integrals have been given as such. This is not surprisin{f@ve frame of referengeof applicability of Eq.(1), other-
since it is well known in nonlinear dynamics of integrable wise they cannot be considered as solutions to the Manakov

Hamiltonian systems that in many cases, while the integral§YStém. The question about the magnitude of these time
of motion are known explicitly, the solutions to the dynami- spales compared with the time s.cale of eyolut|on of the par-
cal equations have not been found in closed form: In generafictlar physical system in hand is a very important, though

finding the solutions of an integrable system is a nontrivial®P€": question. This work will be the basis of addressing this

problem because it is directly connected with the determina!SSU® in a future work as well as for dynamically studying the

tion of the so-called separability conditions. Specifically, generall nonintegrable _cgse%l_). It is e_xpected that the
there has been no systematic study to date of the dynamics [ﬁtter will probgbly exh|b|t chaotic behavior as well.
traveling-wave solutions of Ed1) along this line of reason- 1 n€ paper is organized as follows. In Sec. Il, the reduc-
ing. However, from the physics point of view, explicit tion of Eqg.(1) to a system of two coupled nonlinear ordinary

knowledge of the solutions could be of great importance irdifferential equations, the transformation, and the integration
many cases of the associated Hamiltonian system on the basis afkSta

In this paper, a complete investigation of a wide class 01e|’s method are presented; in the Appendix, the calculation

traveling-wave solutions is made, by reducing the system ir‘?f the.hypgrelliptic intggrals involved is optlined. In Sec. Il
Eq. (1) to a Hamiltonian one. Specifically, E€t) is reduced the utilization of the Stekel theorem leading to the separa-

to a system of two coupled nonlinear ordinary differential blrl:tydof th_e sysftem as wel(lj aﬁ the S(I)|U'FIOI’:S are presefntﬁd.
equations. The latter represents a two-dimensional Hamill "€ domains of motion and the topological structure of the

tonian system, which describes the motion of two Coup|edDoincafesurfaces of section of the resulting Hamiltonian
quartic anharmonic oscillators. As it will be shown, analyti- SYSEm are investigated in Sec. IV. In this section the char-
cal results can be obtained only for=1, that is, for the acter (elliptic or hyperbolig of the periodic orbits(corre-

Manakov system, since this is the only case in which thesPonding to the nonlinear traveling-wave solujioas well

aforementioned dynamical system is integrable in the Liou@s the stability issue associated with it, are analyzed in terms

ville sense, exhibiting one integral besides the Hamiltonianf)'c a few basic parameters of the physical system in hand.

The second integral has been given explicit36] but the _Solitary type asymptotic solgtions are also.identified. Finally,
solutions are not known in closed form. This system jsin Sec. V the main conclusions are recapitulated.

shown to satisfy the Stiel conditions. Thus it is separable

in the Stakel sensd37—39 and, therefore, its phase-space Il. DYNAMICAL ANALYSIS

structure and asymptotic behavidwhich incorporates The main idea of the dynamical analysis is to consider

solitary-type envelope solutions to the system of i”teraCtinQraveling-wave solutions of Eq1) having the form
wavesg are identifiable on the basis of a limited number of

parameters. The Stkel character of a class of traveling- u(é, ny=2x(s)exgdi(Né— u2)], (2a)
wave solutions of the Manakov system might possibly ex-
tend the applicability of these solutions to a wider class of v(é&,7)=2y(s)exdi(Né— u7l2)]. (2b)

physical problems: Stkel potentials have been used exten-
sively in the galactic dynamics where the construction of In Eq.(2), x(s) andy(s) are unknown envelope functions
self-consistent models is mainstream research in this brandi@ssumed to be realwhich depend on the traveling-wave
of physics[40,41], while the Manakov system mainly mod- coordinates. The physical significance of the arbitrary pa-
els nonlinear plasma and optical processes. We will find thatametersu, \;, andX\, is the following[42]: The parameter
under certain well specified conditions, solitary structuresu represents a shift of the frequency and is also related to the
may exist in the latter. Solitary structures also exist in theshift of the group velocity of the waves. The parametess
galactic dynamics. This underlying universalifyom optics and\,, on the other hand, are related to the shifts of the
and plasmas to galaxigsa product of the same underlying wave numbers of the waves. They cannot be simultaneously
(Hamiltonian structure, is quite striking and, therefore, eliminated by any suitable transformation to a moving frame
worth pursuing. of reference: Although the system, Ed), is invariant under
The traveling-wave solutions form a subspace of solutiongalilean transformatiofé3], it can easily be shown, for ex-
for the Manakov system. This subspace is well defined sincemple, that a choice for the velocity of the moving frame,
all periodic solutions are bounded. The solitary solutions aréJo, that eliminates.; (namelyU,= u/2\ ) renders the new
members of this subspace since they are the only asymptoti@alue of\, equal tox,—\;. Notice thatu=0 implies that
solutions corresponding to unstable periodic solutiomshe  the velocity of the wave is equal to the group velocity, the
phase-space dynamical sense, not in the sense of the actsdifts of the wave numbers aof andv are equal ta\;, and
physical system they modelTo each unstable periodic so- \,, respectively, and the trial solutions, E&), correspond
lution correspond two manifoldéone stable and one un- to stationary waves. As is shown[i#2], it is also possible to



1114 C. POLYMILIS, K. HIZANIDIS, AND D. J. FRANTZESKAKIS PRE 58

connect these parameters with the initial conditi¢thsit is,  lowing, their arithmetic values, especially those of the
with the initial information carried by the two interacting Hamiltonian function, will be merely considered as reflecting
modes required to be a certain typ@nvelope, frequency, the variation of the spectral energy density of the interacting
and wave numbegrof nonlinear mode initially launchable.  nonlinear waves.

Upon substituting Eq(2) into Eq. (1), the following non- The overall problem of separability of the Hamiltonian
linear coupled ordinary differential equations can be ob-function lies in the potential functioW(x,y). As we will
tained: see, this function is separable in elliptic coordinates. Then

. 5 5 . the Stakel procedurg37-39 can be applied which will
X+ (M= p 1A x+4x(x*+ oy?) =0, (38 |ead us to a special type of separability of equations of mo-
. 2 2 o tion as we will see in the next section. The elliptic coordi-
y+(No— ul4)y+4y(y“+ox°) =0, (3b)

natesQ; andQ, (with the conventiorQ,<Q,, without loss

where the notatiork=dx/ds, Xx=d?x/ds?, y=dy/ds, ¥ of generality are defined as the two roots at the equation,

=d?y/ds? has been introduced. These equations describe the X2 y2
motion of a particle in a two-dimensional central potential —+ —C =1. 9
V(X,y). The first integral of motion, namely the Hamiltonian Q Q
function, has the form The real constant plays only an auxiliary role and will
H V)= L5+ v2) 4V 4 relate back to the parametefsandB that enter in the po-
(Y Xy)=2(XHY) +HVXY) @ tential function V(x,y). Since the Cartesian coordinates
while the potentiaM(x,y) is given by (X,y) can be expressed with respect @Q,(Q,) via the re-
lations
V(x,y)=Ax2+By?*+ (x2+y?)2+2(c—1)x%y%, (5
Q:1Q2 (Q1—C)(C—-Qy)
where XZZT. y?= C : (10

1 _ .2 —_1 _ 2
A=2(Ay—p4), B=3(Ny—u4). (6) there follows a restriction imposed d@'s (two alternatives

The dynamical system represented by Eds.and (5) de- for C>0 andC<0, respectively,
scribes the motion of two coupled quartic anharmonic oscil-
lators. The cas@&=B (that is,\;=\,) corresponds to equal

shifts (leading to zero shifts under a proper Galilean trans- The value ofC can now be set via the following proce-

formation) in the wave numbers of the two waves. In this qre: By differentiating Eq(10) one readily yields fox and
case, the system is separable in parabolic coordinates andylt

has been studied in the literat44].

Q:>0>Q,>C or Q;>C>Q,>0. (11

This system is integrable only far=1 [which means X Qz Qz Y Ql Qz
that the original system, Eql), is reduced to the Manakov X= > Q—+ Q_ , Y= > me ﬁ . (12
systenj, exhibiting a second integral of motidi86]. The 1ox2 ! 2
Hamiltonian function of the integrable case, The generating function that yields Ed12) (i.e., X
H(X,Y, %)) = 22+ y2) + A+ By2+ (62 +y2)2,  (7) =gF/ox, y=dF/dy) as well as the conjugate @, andQ,

momentsP,; andP,, respectively(i.e., P;=—3dF/dQ4, P,
is the first integral of motion while a second one exists,= —dF/dQ,), can readily be found,
namely, . . ) : .
Q1 %) A ( Q1 N Q2
4 1Q,-C Q—CJ°

2
X
L(X,Y,%,Y) = (Xy—yX) 2+ (B— A) (X?+ 2x*+ 2x2y? =79, q,

2 . .

+2AX0. ® Upon evaluatind®; andP,, one can recasd; andQ, in
Both constants of the motioH (x,y,X,y) and I(X,y,X,y), terms qf the new c_oordinates and moment, by inverting the
are merely fourth- and second-order polynomials of the am[€SPective expression,
plitudes (ul|,|v|) of the wave envelopes and theislow)
rates of changed|u|/ds,d|v|/ds) in the moving frame of o) :4P1Q1(Q1_C) o) :4P2Q2(C_Qz) (14)
reference, respectively. They are, therefore, closely con- ! Q,—Q, ' 2 Q,—Q, '
nected with the localin the moving framg spectral energy
density and the rate of slow variations of the latter; howeverThe Hamiltonian function, Eq(7), now becomes, via Egs.

more precise physical interpretations are lacking. In the fol{10), (12), and(14),

(13

H(Q1,Q2,P1,P2) ={2P%Q;(Q;— C)—2P3Q4(Q,— C) +(Q1+ Q,— C)%(Q;— Q,)
+[AQQ2+B(Q;—C)(C—Q2)](Q1 - Q2)C Q- Q) % (15)
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By choosing the paramet€ such that form. The utilization of Stekel's theorem allows us to reach
an equation that involves the following: The generalized co-
C=B-A, (16 ordinatesQ, andQ,, the pair i) of values for the respec-

tive generalized Hamiltonian, and the second integral of mo-
tion as well as the coordinates of referenQg(sy) and
Q,(sp). According to Stakel, one may introduce a potential
Yunction U(Q;,Q,) such that

the numerator of the expression Ef5) becomes separable,
i.e., it can then be written as the algebraic sum of two ex
pressions, each one involving only one conjugate pair. |
other words, the new Hamiltonian function becomes

H(Q1,Q2.B1,By) p="0 j=12 (19
2 an
2 (—1)3‘1Qj(Qj—C)(2Pj2+QJ-+A) for fixed values for the respective Hamiltonianh
_i=t 17 =H(Q;,Q,,dU/dQ,,dU/dQ,) and the second invariant
Q:—Qz ' function i=1(Q4,Q,,9U/dQ,,dU/3Q,) (lower case de-

. . L o . notes fixed values for the respective functipnEquation
It is worth noticing that, in its new description, the Hamil- (18) then yields

tonian [Eq. (17)], being quadratic inQ, retains its initial

(weak interpretation as a measure of the variation of the o [ Qilh—(Q;+A)(Q;—C)]—i/2 w2z
spectral energy density, since products@$ are quadrati- P;=(—1)""" 20.(0,—C) . 1=1,2.
cally related to squares of the envelope amplitufigs. 1 (20)
(10)].

The second integral(Q,,Q2.,P1.,P,), Eq.(8), can also  One can, therefore, deduce th#¢Q;,Q,) can be expressed
be expressed in terms of the new canonical pairs. Utilizinggs a sum of two potential functiongach being depended
Egs. (10), (12, and (14) as well as the expression for the only upon a single generalized coordinate, namely, the func-

new Hamiltonian function, Ed7) in £4. (8) yields tions) U(Q;) with j=1,2. Thus, Eq(20) can be rewritten
foll :
1(Q1,Q2,P1,P2) =Qi[H(Q1,Q2,P1,P2) — (Qi— C) (2P} = O_WS
+Q+A)], =12 (19) dL(”:(_l)s_j Q[h—(Q,+A)(Q;—C)]—i/2| 2
dQ; 2Q;(Q;—C) ’

I1l. SEPARABILITY OF THE SYSTEM AND SOLUTIONS .
ji=1,2. (22)

The dynamical system at hand in its new description, Eq.
(17) can be made separable in thé &l sense. In addition, By integrating Eq.(21), the value of the potential function
using the expression for the second integral, @§), we are  U(Q,Q,) (apart of an arbitrary constantan readily be
able to obtain the solutions of the system at hand in closedbtained,

2 i [ Q[[h—(Q[+A)(Q/—C)]—i/2|*?
U(Qlsz;h,i)=;l (_1)3*1f Jde,( J[ i i ] |

2Q/(Q—C) 22
Following Stakel, one has
d i =-— o ds, (23
dQjo dQjo
whereQjq plays the role of the initial canonical coordinates. Combining now E2.and (23) readily yields
2 _ Qj 1/2
dv8=2, Q- g —ejia =10, +ANQ,-—CIT 172 29

This expression can be integrated providing the temporal In order to integrate Eq24), knowledge of the domain of
structure of an orbit on the planar subspacevariation ofQ; andQ, is necessary. It should be emphasized
(Q1.Q,), namely an expression of the type that the term “domain” refers to a specified orbit in phase
f(Q1,Q2;5:Q10,Q20;h,i)=0. However, the evaluation of a space, that is, the Hamiltonian and the second invariant are
such a function is confronted with expressing the hyperellipconsidered as fixed with valuésandi, respectively.

tic integrals[45] involved in the RHS of Eq(24) in terms of In addition to the restriction originating from the coordi-
known functions. nate transformation, Eq11), a real solution of Eq(24) in
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the time domain imposes the following additional require- Q(1)<Q2<Q<2)<Q1<Q(3), (26)
ment:
that is, an important physical result is obtained: the domains
of the values 0fQ, andQ, are disjoint and bounded by the
Qj(Qj—O){i12+Q;[(Q;+A)Q;—C)—h]}=0, j=1,2 (alway9 real roots of the aforementioned cubic polynomial.
(25  Therefore, the envelope values of the traveling-wave solu-
tions (directly associated tQ’s via the elliptic transforma-
. . - ._tion) exhibit the fundamental property that certain functions
As far as the cubic polynomlal within the curly_ brackets is them (namely theQ’s) can be initially launched indepen-
concerned, there exist two cases to be examined: the cag@ntly inside predefined domains depended upon the desired
where there is only one real ro@"), and the case of three gpectral characteristics. We will return to this subject in the
real roots,QW<Q@<Q®. For the first case it is readily next section in detail.
evident[by utilizing Eq. (11)] that, independently o€, Eq. The pair of values of the two constants of the motion
(25 cannot be satisfied. In the second case, also indepewbviously provides a certain orbit that passes through the
dently of C, one obtains the following condition: reference position a&=s;. Integration of Eq(24) yields

Bs—s9)= JQl(S) dxyx JQz(S) dxyx 7

Q1(sg) \/(x—C){x[h—(x+A)(x—C)]—i/2}Jr Qa(sp) \/(x—C){x[h—(x+A)(x—C)]—i/2}'

It can be easily seen by utilizing the results in the Appendix that, depending@pBnq. (27) yields the following converging
series.
ForC<0, 1=-Q,/C,

_ :L ¢ E IL (1) 1 D 1 _(3)( _Qz(s))_ {3)( _Qz(So))
MRS 20(4) 20| T e " | T e " c | "t
1=—C 1==¢

(283
ForC<0, —Q,/C=1,
I o L _ i(2)(_ ¢ )__ i_(2)<_ ¢ @3 _Q2(5)>
o \/8|C|i—20(4) <i!>?<2i—1>{( e T R Rt wrool R U Er
Q2(so)
131
I (1 = ) (280

ForC>0,

L oG ne . ¢ _()( C ) 1 ()<_Q2(S))_ 1 (_Qz<sO))
S7S0= WEO(Z) W{'V‘( Ql(S)) o) Tzt e Tamr e

(280

where the functionsi(y) are connected through recurrence work. Instead, it is highly important to investigate the possi-

relations to three basic functions of the same argumendility of the quasiperiodic behavior @, andQ,, as well as

namely,| ), |gy), and1{” . The latter, in turn, are directly the e_xistence of non_de_generate_ bounded asymptotic states

related to the elliptic integrals of the first, second, and third(that is, states of vanishing nonlinear frequency that acquire

kind (see the Appendjx The superscripy=1,2,...,5 refers finite Q's and P’s). The latter correspond teolitary enve-

to five distinct recurrence relations. lope solutions ((S.). and y(s)_ of th_e pr_oblem at hand. The
Equations(28) provide the orbits in the generalized con- study can be facilitated by investigating the structure of the

figuration spac&;-Q,. However, the temporal connection phase space considering a Poincsueface of section.
between these two dynamical variables is only indirectly
provided by these equations since only the time variable can
explicitly be expressed in terms of a series of function® of
andQ, and not vice versa. There exists a remote possibility, The study of the dynamics of the Hamiltonian system at
Eqg. (28), to be invertible, though the inversion seems anhand[in terms of the second integral, E¢L8)] is highly
extremely arduous task and goes beyond the scope of thfacilitated by studying the topological features of the sets of

IV. POINCARE SURFACE OF SECTION.
DOMAINS OF MOTION AND TOPOLOGY
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points of successive intersections of a trajectory with a twopossess real-valued generalized momperghvays corre-
dimensional surface in the phase space. On such a surfacesgond to unstable periodic orbiteyperbolic points on the
section[either Q,,P,) or (Q,,P,)], the so-called Poincare respective Poincarsurface of section As far as the third
surface of section, a trajectory of fixed Hamiltonian valuepair is concerned, it corresponds to stable periodic orbits
provides a set of points of intersection that forms an invari{elliptic pointg as long as the following condition is satis-
ant curve. Each invariant curve corresponds to a differentied:

value of the second integral and represents a quasiperiodic

orbit located on a two-dimensional torus and is also confined

on the surface H(Q4,Q,,P,,P,)=h of the four-

+Q(Q-C)t%>0. (34)

dimensional phase space. In this space, it is well known thathe elliptic and the hyperbolic points will be called, respec-
the invariant curves are the intersections of the two+ively, O points andX points thereaftefj=1 or 2.
dimensional tori with the surface of section. According to the

Kolmogorov-Arnold-Moser(KAM ) theorem, and since the
system is integrable, for theamearithmetic value of the
energy the set of the tori is continuous and thus the invariant
curves, corresponding tdifferent arithmetic values of the

A. The character of the periodic orbits
and the parameter space

It is well known from the basic theory of the dynamical

second integral, are continuously distributed on the surfaceystems that the separatrices separate regions of qualitatively

of section.

different types of motion. As far as the stationary or

Of special interest are the invariant points that represenfraveling-wave solutions of the NLS are concerned, it is also
periodic orbits on a Poincamurface of section. On the sur- well known that separatrices correspond tsoditary typeof
face of section the location of the periodic orbits of an inte-solution: Asymptotic states of periodjm the traveling-wave
grable system can be found in terms of the second integraloordinates) nonlinear waves of infinite periopd7]. Such

[46], by setting

al al

Solving Eq.(29) leads to a set of point®Q; ,P;; j=1 or 2
on the respective Poincagarfaces of sectiofion (Qq,P;)

or (Q,,P,) planeg, which correspond to periodic orbits. On

the other hand, depending upon the sign of the quantity

A &l )2 _— ) 20
~ Q7 97 \oQupy 1T T A 0

where the derivatives are taken at the solution of &§),

types of solutions in the problem at hand will be of para-
mount importance: In wave-related applications, for example
(such as in optigs the solitary nature of the envelope solu-
tions to Eq.(1) will assure the possibility of modulated pulse
propagation in the associated medium, and so on.

The topological features of the aforementioned separa-
trices are tightly connected with the position and the number
of the X points, which the particular choice of the param-
etersA, B, andh allows. It was already mentioned in the
preceding section that the two pairs of points defined by Eq.
(31) are always(when they do exigtx points lying on the
lines Q;=0 andQ;=C. The character of the third pair de-
pends upon the choice of the parameigr8, andh. As we
already mentioned in the preceding sections, the latter set of

the corresponding periodic orbits are characterized as stablgarameters is directly related with shifts in the wave numbers

(A>0, i.e., elliptic point$ or as unstabléA <0, i.e., hyper-

and frequencies as well as the spectral energy density varia-

bolic pointg. For the Hamiltonian system at hand, we find tion of the interacting waves. In order to investigate the ex-

the periodic orbits by using the second integfB8). Then

solving Eq.(29), the periodic orbits solutions are six in gen-

eral,
Q;=0, P;=%(Q,Q_/2C)*?, (313

Q;=C, Pj=={[C(2Q_—3C)-Q.(Q_—2C)]/2C}'?,

(31b
Q;=Q¢", P,=0, (310
whereQ{*) are given by
(A2 2 112
Q)= Q++Q——(Q+‘;Q_ Q.Q-) -

andQ= are parameters, functions bf A, andB, given by
BZ
Z+ h

12
(33

= A+B+
Qi_ E—

istence and the character of all and O points involved in

the topological structure of the Poincanarfaces of sections,

a very informative and comprehensive view of the structure
and the respective dynamical behavior is devised based on
this particular set of parameters.

One can construct for a specified value of the Hamil-
tonian,h, a chart on the4,B)-parameter plané-igs. 1 and
2). On each such chart there exists a network of curves
f(A,B;h)=0, which divide the parameter space into several
subspaces corresponding to a different character of the third
pair of the periodic orbit®; = Q{"), P;=0 (XX, OO, XO,
andOX with the first character symbol referring @; and
the second t@f). The several levels of shading refer to the
status(existence or no existengef the first two pairs of Eq.
(31). Figures 1 and 2 refer to the respective cases of positive
and negative Hamiltonian valuds,

For the casen>0 (h=4 in the example shownthere
exist sixteen subregions. The network of borderlines of these
subregions consists of the curvas-B, A=B/2, A=2B, h
=B(B—A), andh=A(A—-B). The subregions, which are

It is straightforward, though lengthy, to show that the firstwhite, refer to a choice inA,B) that allows only the third

and the second pair of periodic orbits in E§1) (when they

pair [given by Eq.(319] of periodic orbits to exist. These
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FIG. 1. (A,B)-parameter space fdr=4. The character of the
third pair of periodic orbits is indicatefwith the first (secondl FIG. 2. (A,B)-parameter space fér=—2. The character of the
character symbol referring t@=0Q; (Q=Q7)] along with the third pair of periodic orbits is indicatefwith the first (secondl
status of the first two pairélways hyperboligin the sixteen sub- character symbol referring tQ=Q; (Q=Q;)] along with the
regions: White, only the third pair exists; light gray, only the secondstatus of the first two pairgalways hyperboligin the six subre-
and the third pairs exist; gray, only the first and the third pairs existgions: Light gray, only the second and the third pairs exist; gray,
dark gray, all three pairs of periodic orbits exist. only the first and the third pairs exist; dark gray, all three pairs of
periodic orbits exist; white, there exist no choices in the parameter
valuesA and B that render a non-negative value of the “kinetic

orbits are both elliptiqsubregions 3 and)6or both hyper- energy” h—V(x.y).

bolic (subregions 14 and 16n character. In the light-gray
subregiongtotally four subregions: 2, 7, 10, and)1dnly the
second and the third pair of periodic orbits eXig. (31b)
and (319]. The character of the third pair is mixgodne The permissibleregion of motion in the phase space is
hyperbolic and one elliptic Symmetrically to the previous defined via the requirement of the “kinetic energy” part of
set of subregiong§with respect to theA=B axis of symme-
try) lie four subregions indicated by a gray coldr 8, 9, and
12). In these subregions only the first and the third pairs 3
exist. The latter corresponds to orbits of opposite character, L
as before. In the remaining four subregions, indicated by a
dark-gray color, all three pairs of periodic orbits exist and
both orbits of the third pair have the same character: hyper-
bolic in 4 and 5 and elliptic in 13 and 15. 1 +
For the casé<0 (h=—2 in the example shownon the
other hand, there exist six subregions. The respective net-
work of borderlines are the curvds=B(B—A), h=A(A P o
—B), A=B, A=—2|H|Y? andB=—2|H|*2 In the white :
guadrant to the left and above the latter two lines, respec- -1+
tively, there exist no choices in the parameter valvesdB
that render physically meaningfuls andy’s [that is, a non-
negative value of the “kinetic energyh—V(x,y)]. In the —-2r
two light-gray subregion$2 and 4 only the second and the L
third pair of periodic orbits existEq. (31b) and (31¢)] and _3 ; I , . . .
the character of the third pair is mixédne hyperbolic and ~0.5 0.5 1.5 2.5 3.5
one elliptig. Symmetrically to the previous set of subregions Q
(with respect to théA=B axis of symmetry lie two subre-
gions indicated by a gray col¢t and 3. In these subregions  F|G. 3. Poincaresurface of section for a case Wiflit<Q_
only the first and the third pairs exist. The latter correspondscq, , Q{~)<C]. The dashed curves correspond to the contour
to orbits of opposite character, as before. In the remaining-0. The thick solid curves are the separatrices. The vertical one
two subregions 5 and 6, indicated by a dark-gray color, altoincides with the lin€ = C. The elliptic and the hyperbolic points
three pairs of periodic orbits exist and both orbits of the thirdare denoted, respectively, by a circle and a thick dot. Contours of
pair are elliptic. constant value of the second invariantare shown.

B. Structure of the phase space

: >0
g: I<0




PRE 58 PHASE PLANE STACKEL POTENTIAL DYNAMICS OF . .. 1119

the Hamiltonian function being non-negative. For a fixed . Q,+Q_+2(Q2+Q%-Q,Q. )
value of the Hamiltonianh (that is, for a fixed envelope Q2 3 , (36
amplitude variatiojy this requirement, expressed in terms of
the coordinate®, andQ,, can be shown that it leads to the where Q.. are given by Egs(33). This means that for a
following: given arithmetic valudn of the Hamiltonian, the topological
structure of the invariant curves inside the permissible region
(35) of motion depends upon the ordering of the paramefers
andC and, occasionally, upon the ordering of the parameter
() andC.
We find seven topologically distinct cases by using the
condition(35) and Eqs(32), (33), and(36). These cases are
where the parametef3, are defined by respectively shown:

at P=0:Q5'<Q<Qy"”, i=12,

1: 0<C<Q_<Q, [la: Q{)<C, 1b: C<Q|]; 2: C<0<Q_<Q,; 3: C<Q_<0<Q,;
4: 0<Q_<C<Q,; 5. Q_<C<0<Q, [5a: Q{’)<C, 5b: C<Q|{]. (37

We notice that for a given orbit in the phase space and for The permissible region extends within the corresponding
a given arithmetic valué of the Hamiltonian, the orbit in- limiting curves. These curves, when they intersect e
tersections with the subspace®,(,P;) or (Q,P») are to-  axis, do it at one or both poin@=Q%") . Also the limiting
pologically identical. Therefore, it is sufficient to study only cyrves are invariant curves and thus they are calculated by
the various plane curveg),P;) that correspond to differ- sjng the form of the second invariant E¢s9). Calling the
ent choices of the values of the Hamiltonian. corresponding values of the second invariggt and |l yay,

_ Choosing suitable values for the parameterd\, andB,  hey are found as functions of the parametérss, andh.
in Figs. 3—9 the corresponding Poincareface of section of Their expressions in terms @.. are

the above seven distinct cases is shown. In all cé3@és
once the set of parameter values is chosen the location and 5

the stability character of the corresponding periodic are | =~ T10%+0%+ _ 3
found, by using Eqs(31), (32), (33), and the conditiori34). mn- 27 [Q3+Q=+(Q.=Q-)

The O points andX points are denoted by a circle and a 5 2.3
thick dot, respectively. —2(Q3-Q:Q_+Q%)%], (389

5

P
—1
-3
. 5 i [ i
q Q
FIG. 4. Poincaresurface of section for a case wiflt<Q_ FIG. 5. Poincaresurface of section for a case wii<0<Q_

<Q.,, C<Q(1*)]. The dashed curves correspond to the contour <Q, . The dashed curve and vertical line correspond to the contour
=0. The thick solid curve is the separatrix, which, in this casei=0. The thick solid curve is the separatrix, which, in this case,
coincides with the contour=1,,. The elliptic and the hyperbolic coincides with the contour=1,,. The sole elliptic and the hyper-
points are denoted, respectively, by a circle and a thick dot. Conbolic points are denoted, respectively, by a circle and a thick dot.
tours of constant value of the second invaridntare shown. Contours of constant value of the second invaribpgre shown.
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__5 LL ) ]
-1.10 0.75 2.60
FIG. 6. Poincaresurface of section for a case wih<Q_<0 FIG. 8. Poincaresurface of section for a case wiflp_<C

<Q. . The thick solid curves are the separatrices, which, in this<0<Q. , Q(l’)<C]. The thick solid curves are the separatrices,
case, coached with the contdur 0. The elliptic and the hyperbolic  which, in this case, coached with the contours 0. The elliptic
points are denoted, respectively, by a circle and a thick dot. Conand the hyperbolic points are denoted, respectively, by a circle and

tours of constant value of the second invaridntare shown. a thick dot. Contours of constant value of the second invariant,
are shown.
2 s 3 3
'max_2_7[Q++Qf+(Q+_Qf) correspond to the asymptotic solutions of the system and
separate the phase space in regions of a different type of
+2(Q%2-Q.Q_+Q%)%7. (38D  “motion.” We have also calculated many invariant curves.

These curves represent quasiperiodic orbits and correspond
The thick solid curves, in Figs. 3—-9, correspond to separato different arithmetic value$ of the second invariant de-
trices that pass through the unstable periodic orthiggoer- ~ pending on the initial conditions. Thus the invariant curves
bolic points on the surface of sectionThese separatrices

2.5
2
1.5 (H=1.1875) };
0.5
P

—0.5

-1.5

-2.5 W

-3.9 -1.9 0.1 2.1

FIG. 9. Poincaresurface of section for a case wifl)_<C

FIG. 7. Poincaresurface of section for a case with@Q_<C <0<Q,, C< Q(l_)]. The thick solid curves, except for the right-
< Q. . The thick solid curves, except for the rightmost one, are themost one, are the separatrices. The vertical Qrre0 (a separatrix
separatrices. The leftmost one, along with the dashed curve in thend the separatrix that intersects it coached, in this case, with the
right, are contours of=0. The rightmost thick solid curve is also contour ofi=0. The rightmost thick solid curve is also &0
ani=0 contour. The elliptic and the hyperbolic points are denotedcontour. The elliptic and the hyperbolic points are denoted, respec-
respectively, by a circle and a thick dot. Contours of constant valugively, by a circle and a thick dot. Contours of constant value of the
of the second invariant, are shown. second invariant,, are shown.
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are calculated, because the system is integrable, in terms (case Q, AND/OR Q, - ASYMPTOTIC 0,10,
the second integral Egél9) instead of the calculation of the | No. SOLUTIONS
orbits. The value of the second invariant can be positive or = = 5 [oa
negative(namely,i>0 ori<0). The dashed lines and curves | ia E:E <
correspond to the contoiir=0 whose intersection with the e e Ly Bx [UA
Q axis is one or both point®=Q. . We notice that the A 4 i QP |UA
permissible region for the cases 1a, 1b, an#ids. 3, 4, and 1b M§> zZ mjéb@ . 0’10 Al b
7) is defined by the limiting curves and the ligg=0. The Tl 1 0 BA |UA
latter line becomes, instead, the liQe=C for the cases 5a g >&Q>
and 5b for Figs. 8 and 9. o-c

It is now evident that all the information about the behav- = 1 SR
ior of the system at hand can be obtained in an explicit way| 3 ;:E é

Q=d 'Q=0

in terms of its second integral. In other words, for given

) Boy |, Boy =0, ; =07, N BA [UA
values of the parameters B, andh (directly related to the N Lo P o i) i@y |Ba|ua

L. . . . . 4 Lo [0 s : : ' P U |BA
spectral characteristics if one aims towards nonlinear optics o:;ﬂiozc e ot o s W;/ U |BA
applications, for examplea variety of quantities of great 0\ SN BA |UA
practical interest can then be easily evaluated or, at leas| . ;:D o [ S
estimated: The set of the required initial conditions for eclomd g

launching, the boundaries of the envelope solution variations L N ! §Q i KQ\ Sl
with s, and, most importantly, the kind of motidgsolitary or s | (A Oﬂ @ P < / U |BA
otherwise and the asymptotic solutions themselves as well. e pl e o ow R

FIG. 10. The seven subcases 1:<G<Q_<Q, [1la: Q{”
C. Asymptotic solutions <C, 1b: C<Q{)]; 2 C<0<Q_<Q.; 3: C<Q_<0<Q.;

. . . 4: <Q_<C<Q,;5 Q_<C<0<Q, [5a: Q{’)<C, 5b:
The asymptotic solutions, corresponding to the SeparaC<Q(l,)] with characterization of regulafquasiperiodic or un-

trices, are of_great physical |_mportanc_e since they repre_se ttJunded nonperiodjcstates and/or asymptotic states: BA, bounded
generally solitary or/and soliton solutions. Thus a detaile symptotic; QP, quasiperiodic; UA, unbounded asymptaficun-

discussion of the asymptotic solutions of the system at hang,;ndeq. Only in the subcases 1a and 3 do there exist pairs of
is needed. bounded asymptotic solutionsolitary) for the envelopes of the

All seven subcase@7) of the problem at hand, from the interacting wave forms. The thick solid curves correspond to
point of view of the form of the asymptotic states they pos-asymptotic states that can be bounded or unbounded. The thin solid
sess, can be grouped into four distinct families that are suncurves correspond to regular states.
marized and tabulated in Fig. 10.

In the subcase 1a, illustrated in Fig(@<C<Q_<Q. bounded asymptotic solutions: The bounded asymptotic state
with Q(l‘)<C), it is clear that there exists a pair of for Q; is accompanied by an unboundé&hd nondegener-
asymptotic trajectories in the phase space whose corresponalte asymptotic one foiQ, and vice versa. The respective
ing invariant curves on the surfaces of section are the thickalues of the second invariant for the first two of these sub-
solid curves passing through the pairs of the hyperbolicases are theninimum (and negativeé ones. As far as the
points lying on the line®,=C, Q,=C. Furthermore, they third subcase is concerned, the second invarianeia
correspond to aegativevalue of the second invariafsub- The situation is somewhat different for the remaining two
domainsg). The curved branches of these two asymptoticsubcases illustrated in Figs. 7 and€ubcases 4 and 5b in
states coincide and are bounded. The respective vertic&lg. (37)]. Again, these subcases do not possess bounded
branches are complementaigne line segment between the asymptotic solutions: The bounded asymptotic stat€Xpis
two hyperbolic points and one pair of semi-infinite lines accompanied by an unboundedand nondegenergte
They actually form a pair of identical sets of three line seg-asymptotic one foQ, and vice versa, as in the three previ-
ments. The curved branches correspond to solitary envelopmus cases. However, one can readily observe that there exist
solutions of the physical system at hand. The two coincidingwo such combinations in each one of these subcases: For the
states (Q;=C and Q,=C) on the two sets of vertical first one (Fig. 7) two bounded-unbounded pairs faero
branches, on the other hand, are degenerate asymptotialue ofi (between regions and 8) and two forpositive i
states: In terms of the envelope functigoslizing Eq. (10)]  (the regionsx in the vicinity of Q=C). As far as the second
they correspond to the stateés)==*1 andy(s)=0. one (Fig. 9 is concerned, there exist two bounded-

One may observe a similar structure for the subcase illusinbounded pairs fozerovalue ofi (between regions and
trated in Fig. 6, namely, subcase 3 in E§7): The pairs of B in the vicinity of Q=0) and two fornegativevalue ofi (in
hyperbolic points lie on the vertical ling3,=0, Q,=0 and the remaining regiong).
the two coinciding state€Q;=0 andQ,=0) on the respec- Figures 1, 2, and 10 provide, in a comprehensive and
tive sets of vertical branches are the degenerate ones, whidtystrative way, information about the possibility of launch-
in this case, are thédentica) statesx(s)=0 andy(s)=0. ing a traveling modey,v) possessing a solitafgpatially or
The value of the second invariant for the appearance of thisemporally localized in the moving framenvelope of given
solitary envelope solution igeroin this subcase. A, B, andh. At the same time, they provide information for

The subcases that are illustrated in Figs. 4, 5, ahsllB-  all the nonlinear modes whose limiting forms are all the
cases 1b, 2, and 5a in E@7)] do not possess pairs of possible asymptotic states, namely, solitary, unbounded, or
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degenerate. Therefore, since the basic paramét@sare  studied since the asymptotic states correspond to the separa-
directly associated with the nonlinear shifts in frequency andrices in the phase space. All possible asymptotic states were
wave number of the carridas we saw in the Introductipn  easily identifiednamely, solitary, unbounded, or degeneyate
the latter plays a dominant role in “shaping-up” the enve-whose character depended upon the behavior and value of
lope (x,Y). the second invariantintegral of motion. They were also
categorized and presented in a systematic way in a three-
dimensional parameter space spanned\byB, andh. The
choice of parameters was based on the fact th@ are
associated with the nonlinear shifts in frequency and wave
number of the carrier directly, which, in turn, are related to
A complete investigation of a wide class of traveling- the initial information content of the two interacting modes
wave solutions is made, by reducing a system of two couple¢hat the Manakov system models while the valué gEom-
nonlinear Schrdinger (NLS) equations when it represents plicated invariant dynamical functigrreflects the spectral
the so-called Manakov system, in a dynamical system thanergy content carried by the interacting modes. A basic out-
admits soliton solutions. The reduced system is a twoSOme of this description is the following: For given values of
dimensional Hamiltonian one, which describes the motion ofn€ parameterfA, B, andh) a (Q,,P,) invariant curve(on
two coupled quartic anharmonic oscillators. This dynamicaltS "espective Poincamurface of sectionis confined inside a
system is integrable, exhibiting one additional integral be-Subregion, corresponding to a particular valyeof the sec-
sides the Hamiltonian, which can be explicitly written even©nd invariant. Simultaneously, the respectiv@,(P;) in-
without knowing the solutions in closed form. yarlant. curve with thesam'e value (i) of the second invariant
The reduced Hamiltonian system is shown to be separabl§ confined in a subdomain that corresponds to a complemen-
in the Stakel sense by transforming it to a new coordinatetary subdomaini.e., the same\, B, h, andi but of a(dis-
system Q,P). The utilization of the Stekel's theorem al- JOlntedIy) different set of initial conditionson the @Q,P;)
lowed us to find the solutions, involving hyperelliptic inte- Poincaresurface of section. o _
grals. Series expressions of the latter in closed form in terms Finally, as far as future investigations are concerned, this
of the three elliptic integrals were given on the basis of aVork will be the basis of dynamically studying the general
limited number of parameters and the initial conditions.nonintegrable cases(# 1), which is expected to exhibit cha-
Among these solutions, there exist several that correspond @fi¢ behavior as well. Furthermore, the physical meaning of
solitary-type envelope solutions to the Manakov system. the unbounded solutions, as well as the magnitude of the
The existence of two integrals of motion facilitated a thor-traveling-wave coordinate scales in Etj) as compared with -
ough study of the system: The structure of the phase spadB€ scales of evolution of the particular physical system in
was completely understood by investigating the expressioR@nd, is an open question. These studies are currently in
of the second integral for a given arithmetic value of the firstPrO9ress.
integral and using a Poincaserface of sections. We noticed
that the arithmetic value of the first invariant, namely the
Hamiltonian, depends upon the particular choice of enve-
lope, namely on the set of values,@x/ds,y,dy/ds) at a ACKNOWLEDGMENTS

reference value of the traveling-wave coordinatand the This work has been supported in part by the Commission
type of the traveling waves to which one is aiming, which, in ¢ 4o European UnioHCM) Network on Nonlinear Phe-
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directly associated with the periodic character of the enve- APPENDIX

lope of the traveling-wave solutions to the Manakov system.

Special emphasis was given to the hyperbolic ones since they The integrals involved in Eq27) contain a fourth-order
directly correspond to a solitary type of envelope structurepolynomial under the square root sign in the denominator. It
The asymptotic curvegthe separatrices that correspond tois well known[45] that, if the numerator is an integer power
the hyperbolic fixed poinjsdefining several regions in the of the integration variable, integrals with such denominators
permissible “area of motion” in the phase space were thusan always be expressed through recurrence relations in
also identified. Therefore, different types of motion associterms of the three elliptic integraldirst, second, and third
ated with different sets of initial conditions and especiallykind). The numerator at hand is the square root of the inte-
various quasiperiodic modésr trajectories, in the nomen- gration variable. One can always find a transformation of the
clature for the dynamical systeinsef the Manakov system integration variable that leads to a numerator of the form
were completely identified within these regions. The(1—x)2with |x|<1 (the denominator transforms to a new
asymptotic behavior of these trajectories was thoroughlfourth-order polynomial under the square root gighhen

V. CONCLUSIONS
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(1—x)Y2 can be expressed in terms of a converging series of This approach has been followed in calculating the hyper-
powers of the new integration argument. Therefore, one caalliptic integrals involved in Eq(27). After a straightfor-
then make use of the aforementioned property of integralsvard, though lengthy, calculation, one obtains the following
with such numerators. recurrence relation:

n=3 1/m—3 n=3
2x(2 aL”x““) -2 ay2(m=1)-nlig) (x)
n=1

1900 =—"— , (A1)

m 2aY(m—1)

where
1/2C—h h A

agl)— c? , g_l)_ 1+ E + ?, a(zl): - 6, a(gl): -1, (A2a)

i A h A
a-i, al—mi D apBl Aoy (A2by

A A h h—i/2C
ag3)= 1, a(13)= - 6_ 2, 8(23): 1+ E— Ez, ag3)=T, (AZC)
i A h A
Ag4):_ﬁ’ 8.5_4):64' ?, a(24)=1—6, a(34)=—1, (AZd)
h i/12C—h

a(s)— 1, a(ls)— 2+ a(zs)— e E @, a(35)= c? (A2e)

The arguments of the functionsl {(x) are (1-Q/C) 1, possible combinations of functions fa@; and Q, are
—CIQ, 1-QIC, C/Q, and 1-QIC, respectively, fory  two: (a) typesl{P(x) or1{2)(x) for Q, combined with type
=1,2,...,5. The requirements d@’'s in these arguments in I§n3)(x) for Q,; (b) typeIE;‘)(x) for Q, combined with type
order to ensure convergence of the series expansion of th&)(x) for Q,. Therefore, the integral in E¢27) can be
numerator of the integrants in Eq27) are, respectively, expressed as a series of these functions in three different
(C<0<Q,—Q/C<1), (C<0<Q,1<—-Q/C), (C<Q  ways depending upon the domain of variation of the variable
<0), (0<C<Q), and (0<Q<C), whereQ may either Qq(t) [and the reference valu@,(ty)], namely, (i) C<0

be Q; or Q,. Since the domains of variation df’'s and 1=—-Q4(t)/C; (ii) C<0 and —Qq(t)/C=1; (iii) C

are restricted by Eq(11), one can easily observe that the >0.
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